On the Interaction between Quasilinear Elastodynamics and the Navier-stokes Equations

نویسندگان

  • Daniel Coutand
  • Steve Shkoller
چکیده

The interaction between a viscous fluid and an elastic solid is modeled by a system of parabolic and hyperbolic equations, coupled to one another along the moving material interface through the continuity of the velocity and traction vectors. We prove the existence and uniqueness (locally in time) of strong solutions in Sobolev spaces for quasilinear elastodynamics coupled to the incompressible Navier-Stokes equations. Unlike our approach in [5] for the case of linear elastodynamics, we cannot employ a fixed-point argument on the nonlinear system itself, and are instead forced to regularize it by a particular parabolic artificial viscosity term. We proceed to show that with this specific regularization, we obtain a time interval of existence which is independent of the artificial viscosity; together with a priori estimates, we identify the global solution (in both phases), as well as the interface motion, as a weak limit in srong norms of our sequence of regularized problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations

The interaction between a viscous fluid and an elastic solid is modeled by a system of parabolic and hyperbolic equations, coupled to one another along the moving material interface through the continuity of the velocity and traction vectors. We prove the existence and uniqueness (locally in time) of strong solutions in Sobolev spaces for quasilinear elastodynamics coupled to the incompressible...

متن کامل

Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations

The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...

متن کامل

Optimization with the time-dependent Navier-Stokes equations as constraints

In this paper, optimal distributed control of the time-dependent Navier-Stokes equations is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. A mixed numerical method involving a quasi-Newton algorithm, a novel calculation of the gradients and an inhomogeneous Navier-Stokes solver, to find the opt...

متن کامل

A comparative study between two numerical solutions of the Navier-Stokes equations

The present study aimed to investigate two numerical solutions of the Navier-Stokes equations. For this purpose, the mentioned flow equations were written in two different formulations, namely (i) velocity-pressure and (ii) vorticity-stream function formulations. Solution algorithms and boundary conditions were presented for both formulations and the efficiency of each formulation was investiga...

متن کامل

A Quasilinear Approximation for the Three-dimensional Navier—stokes System

In this paper a modification of the 3-dimensional Navier— Stokes system which defines some system of quasilinear equations in Fourier space is considered. Properties of the obtained system and its finite-dimensional approximations are studied. 2000 Math. Subj. Class. 76D05, 35Q30.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005